

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NMPS(19HS0833) Course & Branch: B.Tech - CE, ME and AGE

Year & Sem: II-B.Tech &II-Sem Regulation: R19

UNIT –I SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS,INTERPOLATION

1	Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.	[L1][CO1]	[12M]
2	Find a positive root of $x^3-x-1=0$ correct to two decimal places by Bisection method	[L1][CO1]	[12M]
3	Find a positive root of $f(x) = e^x$ -3 correct to two decimal places by Bisection method	[L1][CO1]	[12M]
4	Find a real root of the equation $xe^x - \cos x = 0$ using Newton – Raphson method	[L1][CO1]	[12M]
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15	[L3][CO1]	[12M]
6	a. Using Newton-Raphson method Find reciprocal of 12.	[L3][CO1]	[06M]
	b. Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method	[L1][CO1]	[06M]
7	Find out the root of the equation $x \log_{10}(x) = 1.2$ using False position method.	[L1][CO1]	[12M]
8	Find the root of the equation $x e^x = 2$ using Regula-falsi method.	[L1][CO1]	[12M]
9	From the following table values of x and $y=tan x$. Interpolate values of y when $x=0.12$ and $x=0.28$.	[L1][CO1]	[12M]
	x 0.10 0.15 0.20 0.25 0.30		
	y 0.1003 0.1511 0.2027 0.2553 0.3093		
10	a.Using Newton's forward interpolation formula and the given table of values	[L3][CO1]	[06M]
	x 1.1 1.3 1.5 1.7 1.9		
	f(x) = 0.21 = 0.69 = 1.25 = 1.89 = 2.61		
	Obtain the value of $f(x)$ when $x=1.4$.	[I 2][CO1]	[0.4] [7]
	b. Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707$,	[L3][CO1]	[06M]
	$f(30)=0.3027, \ f(35)=0.3386, f(40)=0.3794.$		

UNIT –II NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATIONS

1	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that	[L6][CO2]	[12M]
	$y^1 = y^2 + x$ and $y(0) = 1$		
2	Using Taylor's series method find an approximate value of y at $x = 0.2$ for the D.E y^1 - $2y = 3e^x$, $y(0) = 0$. Compare the numerical solution obtained with exact solution.	[L3][CO2]	[12M]
3	a. Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method. b. Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given $y(1) = 2$ and find $y(2)$.	[L3][CO2] [L3][CO2]	[06M] [06M]
4	Using Euler's method, find an approximate value of y corresponding to $x = 1$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size $h = 0.1$.	[L3][C02]	[12M]
5	a. Using Euler's method $y' = y^2 + x$, $y(0)=1$. Find $y(0.1)$ and $y(0.2)$	[L3][CO2]	[06M]
	b.Using Runge – Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xyy(0)=1$, taking h=0.2	[L3][CO2]	[06M]
6	Using R-K method, evaluate $y(0.1)$ and $y(0.2)$ given $y^1 = x + y$; $y(0) = 1$.	[L3][CO2]	[12M]
7	Using R-K method of 4 th order find y(0.1),y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy$, $y(0) = 2$.	[L3][CO2]	[12M]
8	Solve $y'' - x(y')^2 + y^2 = 0$ using R-K method of 4 th order for $x = 0.2$ given $y(0) = 1$, And $y^1(0) = 0$ taking h=0.2	[L3][CO2]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.	[L5][CO2]	[12M]
	(ii) using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.		
10	a. Compute $\int_{0}^{4} e^{x} dx by simpson's \frac{3}{8} rule with 12 sub divisions.$	[L5][CO2]	[06M]
	b.Compute $\int_{0}^{7} x^{2} \log x dx by Trapezoidal rule and simpson's \frac{1}{3} rule by taking 10 sub divisions.$	[L5][CO2]	[06M]
	3		

UNIT-III BASIC STATISTICS&BASIC PROBABILITY

1	a)i) The weights of 6 competitors in a game are given below 58,62,56,63,55,61 kgs. Find arithmetic mean of weight of competitors. ii) Find the median of the following values 26, 8, 6, 12, 15, 32.							[L3][CO3]	[06M]						
	b. Find arithmetic mean to the following data using step deviation method							[L1][CO3]	[06M]						
	Marks 10-20 20-30 30-40 40-50 50-60														
	Frequenc 5 8 25 2				22		10		=						
	y Din I the westign to the following state														
2	a. Find the median to the following data Class intervals 40-50 50-60 60-70 70-80 80-90									[L1][CO3]	[06M]				
			equency		5	12	23		8	00	2			[][]	[001/2]
	1 77 1				C 11 .	1 .								[I 1][CO2]	[0 4M]
	b. Find a													[L1][CO3]	[06M]
	f	5	8	3 10	12										
3	a)Find n													[L1][CO3]	[06M]
	X	0-5	5-1	0 10	0-15	15-20	20-2	5 2	5-30	30-3	35	35-40			
	F	5	7		10	18	20		12	8		2			
	1-175:141	1	1: 4-	41 C- 11		1-4-	•			•					
	b)Find t	ne me							145	120				[L1][CO3]	[06M]
			X F	5 2	8	12		1 <u>4</u> 20	17 10	6)	23			
4	a) Obtai	n mod			I		<u> </u>			l l	12.2			[L1][CO3]	[06M]
7	a) Obtain mode of the values 10,12,15,20,12,16,18,15,12,10,16,20,12,24. b)The first four moments of a distribution about the value 5 of the variables are 2, 20,								e 2, 20,	[L1][CO3]	[06M]				
	40 and 50. Calculate mean, variance, β_1 and β_2 of the distribution.														
5	Compute Karl Pearson and Bowley's coefficient of Skewness to the following data							ata	[L6][CO3]	[12M]					
	Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100								90-100						
	intervals							70 100							
	frequen	су	2	6	11	20	40	75	4	5	25	18	8		
6	Compute the first four central moments to the following data and also find Shennard's						[L6][CO3]	[12M]							
	Compute the first four central moments to the following data and also find Sheppard's correction, β_1 and β_2							paru s							
	Class intervals $\begin{vmatrix} 0-10 & 10-20 & 20-30 & 30-40 & 40-50 & 50-60 & 60-70 \end{vmatrix}$						70								
		reque		2	8			40	20		.5	3			
7		-		~ .		<u> </u>		. .				1 111	C	[L6][CO3]	[06M]
	a)Three s winning a					_						•			
	_				•					•					
	b) Detern	nine (i	i) $P(B/A$	A) (ii) A	$P \stackrel{A}{\not>} B^C$) if A a	ınd B ar	e ever	ıts wi	th $P(A)$.)= -	$\frac{1}{3}$, $P(B)$	$=\frac{1}{4}$,	[L5][CO3]	[06M]
	$P(A \cup B)$	$=\frac{1}{2}$.													
8	a) In a ce			% have	hrow	n hair ')5% has	ze bro	wn er	ec and	1150	% have	hoth	[L5][CO3]	[06M]
ď	1						selecte		•				ooui		[UUIVI]
	i) If	he has	s brown	hair, v	vhat is	the pro	bability	that h	e has	brown	n eye	es also?			
	ii)If he has brown eyes, determine the probability, that he does not have brown hair?														

	b) The probability that students A, B, C,D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{2}$	[L6][CO3]	[06M]
	respectively If all of them try to solve the problem, what is the probability that	the	
	problem is solved.		
	9 Two dice are thrown. Let A be the event that the sum of the point on the faces is 9.	[L1][C03]	[12M]
	Let B be theevent that at least one number is 6.		
	Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$		
-	10 In a certain college 25% of boys and 10% of girls are studying mathematics. The g	irls [L6][CO3]	[12M]
	Constitute 60% of the student body.		
	(a) What is the probability that mathematics is being studied?		
	(b) If a student is selected at random and is found to be studying mathematics, find	l the	
	probability that the student is a girl?		
	(c) a boy.		

UNIT-IV RANDOM VARIABLES

	Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, $X(a, b) = max(a, b)$. Find the probability distribution. X is a random variable with	[L1][CO4]	[12M]
	$X(s)=\{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution.		
2	A random variable X has the following probability function	[L5][CO4]	[12M]
	X 0 1 2 3 4 5 6 7		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Determine (i) K (ii) Mean iii) variance. (iv) if $P(X \le K) > 1/2$, find the		
3	Minimum value of K	[L1][CO4]	[06M]
	a) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{n}$ for $x = 1, 2,, n$.	[L1][CO4]	[UUIVI]
	b) If a random variable has a Probability density $f(x)$ as $f(x) =\begin{cases} 2e^{-2x}, & for \ x > 0 \\ 0, & for \ x \le 0 \end{cases}$		
	$\begin{cases} 0, & \text{for } x \leq 0 \\ 0, & \text{for } x \leq 0 \end{cases}$	[L6][CO4]	[06M]
	Find the Probabilities that it will take on a value (i) Between 1 & 3 (ii) Greater than 0.5		
4	Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$.	[L6][CO4]	[12M]
	Find the mean, mode and median of the distribution and also find the		
	probability between 0 and $\frac{\pi}{2}$.		
5	a) Probability density function $f(x) = \begin{cases} k(3x^2 - 1), & in - 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$.	[L1][CO4]	[06M]
	i)Find the value of k. ii) Find the probability $(-1 \le x \le 0)$ b) The probability density function of a random variable x is $f(x) = 0$	II (11(00.41	50 (3.5)
		[L6][CO4]	[06M]
	$\begin{cases} kx(x-1); 1 \le x \le 4 \\ 0; elsewhere \end{cases}$ And $P(1 \le x \le 3) = \frac{28}{3}$ Find the value of k		
6	For the continuous probability function $f(x) = \begin{cases} kx^2e^{-x} & \text{when } x \ge 0 \\ 0 & \text{olsewhere} \end{cases}$	[L1][CO4]	[12M]
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
7	Find i) k ii) Mean iii) Variance.	II 11[CO41	[02]
′	a) Define Probability density function.b) A continuous random variable x has the distribution function	[L1][CO4]	[02M]
		[L6][CO4]	[10M]
	$F(x) = \begin{cases} 0 & \text{if } x \le 1\\ k(x-1)^4 & \text{; } 1 < x \le 3\\ 0 & \text{; } x > 3 \end{cases}$		
	$\begin{array}{c} () \\ 0 \\ ; \\ x > 3 \end{array}$		
	Find the value of k and the probability density function of x.		=
8	a) Define Probability Distribution functionsb) A random variable x has the following probability distribution	[L1][CO4] [L6][CO4]	[02M] [10M]
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	լքսյլՆՕ4]	[TATAT]
	P(x) k 3k 5k 7k 9k 11k		
	Find i) k ii) Mean iii) Variance.		
9	A random variable x has the following probability distribution function	[L6][CO4]	[12M]
	x -3 -2 -1 0 1 2 3	[1[1]	[]
	P(x) k 0.1 k 0.2 2k 0.4 2k		
	Find i) k ii) Mean iii) Variance.		
10	A random variable x has the following probability distribution function	[L1][CO4]	[12M]
	x 1 2 3 4 5 6 7 8		- -
	P(x) k 2k 3k 4k 5k 6k 7k 8k		
	Find i) k ii) $P(X \le 2)$ iii) $P(2 \le x \le 5)$.		

UNIT-V

PROBABILITY DISTRIBUTIONS AND CORRELATION

b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at random (i) one is defective (ii) $p(1 < x < 4)$ 2 Fit a Binomial distribution to the following frequency distribution: X 0 1 2 3 4 5 f 2 14 20 34 22 8 3 Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[12M] [12M] [06M] [06M] [12M]
2 Fit a Binomial distribution to the following frequency distribution: x 0 1 2 3 4 5 f 2 14 20 34 22 8 3 Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[12M] [06M] [06M]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[12M] [06M] [06M]
f 2 14 20 34 22 8 3 Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[06M]
3 Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[06M]
(i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[06M]
(i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy 4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[06M]
4 a) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	[06M]
(i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100	
b) If for a poisson variate $2 P(X=0) = P(X=2)$ Find the probability that [L1][CO5]	[12M]
i) P(X≤3) ii) P(2 <x≤5) iii)="" p(x≥3).<="" th=""><th>[12M]</th></x≤5)>	[12M]
5 Fit a Poisson distribution to the following data [L5][CO5]	
x 0 1 2 3 4 5 Total	,
f 142 156 69 27 5 1 400	,
6 In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is [L6][CO5]	[12M]
2.5. Assuming the distribution to be normal find	,
(i) How many students score between 12 and 15.	,
(ii) How many students score above 18?	,
(iii) How many students score below 18?	
7 a) The probability of poisson variate taking the values 1&2 are equal. [L1][CO5]	[06M]
Find i) μ ii) $P(X \ge 1)$ iii) $P(1 \le X \le 4)$.	,
b) If X is a normal variate with mean 30 and standard deviation 5.	[0.6] [1]
Find the probability that i) $26 \le X \le 40$ ii) $X \ge 45$. [L1][CO5]	[06M]
8 Calculate Correlation coefficient to the following data [L5][CO5]	[12M]
X 10 15 12 17 13 16 24 14 22 20	,
Y 30 42 45 46 33 34 40 35 39 38	,
9 Ten competitors in a musical test were ranked by the three judges A,B and C in the [L5][CO5]	[12M]
following order	
	,
Ranks by A 1 6 5 10 3 2 4 9 7 8	,
Ranks by B 3 5 8 4 7 10 2 1 6 9	,
Ranks by C 6 4 9 8 1 2 3 10 5 7	,
Using rank Correlation coefficient method, discuss which pair of judges has the nearest	
approach to common likings in music.	
10 Find two recognitions from the fellowing date.	[10]
10 Find two regression equations from the following data: [L1][CO5]	[12M]
X 10 25 34 42 37 35 36 45	
Y 56 64 63 58 73 75 82 77	